![]() |
Technical Dissolved Oxygen - The FundamentalsDissolved oxygen (DO) is the term commonly used in liquid analytical work for the measurement of the amount of oxygen dissolved in a unit volume of water. It is an important indicator of the degree of usefulness of a sample of water for a specific application. The requirements of a given application determine the level of DO that can be tolerated. In a water quality application, for example, where we want to maintain a fresh water stream fit for recreational purposes such as swimming and fishing and as a source of potable water, we must keep the DO content high. If the DO level falls too low, the fish will suffocate and conditions will become favorable for the growth of harmful bacteria. In sewage treatment, solids are allowed to settle in large basins to which are added solutions rich in bacteria to speed the decomposition of the solids. There is an optimum DO level for this process and the level is maintained by mechanically aerating the "activated sludge" as the bacteria impregnated content of the basins is called. If the DO level falls too low, the bacteria die and the decomposition ceases; if the DO level is excessive, more power is used than necessary for aeration and the process becomes unnecessarily costly. Another important application of DO is the control of the quality of boiler make up water. In this case, since the presence of oxygen in the water will enhance corrosion and cause the build up of boiler scale that inhibits heat transfer, it is very desirable to hold the DO concentration to a minimum.
The
amount of oxygen that a given volume of water can hold is a function
of: Effect
of Partial Pressure of Oxygen on Dissolved Oxygen Effect
of Temperature on Dissolved Oxygen
Measurement Techniques One technique uses a Clark-type cell which is merely an electrode system separated from the sample stream by a semi-permeable membrane. This membrane permits the oxygen dissolved in the sample to pass through it to the electrode system while preventing liquids and ionic species from doing so. The cathode is a hydrogen electrode and carries a negative applied potential with respect to the anode. Electrolyte surrounds the electrode pair and is contained by the membrane. In the absence of a reactant, the cathode becomes polarized with hydrogen and resistance to current flow becomes infinite. When a reactant, such as oxygen that has passed through the membrane is present, the cathode is depolarized and electrons are consumed. The anode of the electrode pair must react with the product of the depolarization reaction with a corresponding release of electrons. As a result, the electrode pair permits current to flow in direct proportion to the amount of oxygen or reactant entering the system; hence, the magnitude of the current gives us a direct measure of the amount of oxygen entering the system. Membrane probes readily lend themselves to conditions of high interfacial turbulence. In the case of the thallium probe, a high degree of turbulence may decrease the life of the probe because high turbulence will sweep away the thallium ions, thus causing electrode depletion.
The two principle gaseous interferers of membrane probe measurements are chlorine and hydrogen sulfide. Sulfur compounds such as hydrogen sulfide, sulfur dioxide and mercaptans cause erroneous outputs from the thallium probe. Halogens do not interfere with the thallium probe.Figure 3 - Velocity, Agitation, and/or Turbulence Effects of Interfacial Dynamics on Probe Output.Figure 2 - Typical Curves Concentration of Dissolved Oxygen at Saturation At low dissolved oxygen concentrations, pH variations below pH 5 and above pH 9 interfere with the performance of the thallium probe. This interference amounts to about ±0.5 mg/L DO per pH unit. The performance of membraned probes is not affected by pH changes. A serious limitation of the thallium probe is the fact that thallium is quite toxic and you must exercise care in using it. Membrane probes do not have this drawback. Since all of the oxygen that passes through the membrane reacts and since the amount of oxygen that passes through the membrane is a function of the partial pressure of the oxygen in solution, this technique actually measures the partial pressure of the oxygen in solution. It does not measure the actual concentration of the oxygen in the solution. For this reason, we must correct the readings of DO concentration given by this technique when some substance, for example salt, is dissolved in the water. As we saw above, the dissolved salt will reduce the number of holes available for carrying oxygen and hence reduce the actual concentration of oxygen without changing its partial pressure in the solution. If the electrode materials are selected so that the difference in potential is -0.5 volts or greater at the cathode, an external potential is not required and we have what is called a galvanic system. Some workers in this field, instead of relying on their selection of electrode materials to give them the required -0.5 volts difference of potential at the cathode, use an external potential source to give them the required potential difference. This system is known as a polarographic system. In either case, since the partial pressure of dissolved oxygen is a function of the temperature of the sample, we must either hold the temperature of the sample constant or compensate for varying sample temperature. Generally, the former is impractical so the latter is the more popular approach. A suitably selected thermistor or resistance thermometer in a properly designed electric circuit does a fair job of temperature compensation.
Curve A 0 mg/L chlorides Curve B 5,000 mg/L chlorides Document #1234On-line Publishing Service U.S.A. and Canada For Technical Assistance: Reproduced with permission of Royce Instruments. |